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ABSTRACT  

In this paper, the reduced differential transformation method is used to obtain the solution of systems of nonlinear 

partial differential equation. The exact solutions of three systems of nonlinear partial differential equations are calculated 

in the form of  series with easily computable components. 

A comparison of the technique with some other known techniques like Adomian Decomposition Method (ADM), 

Variation Iteration Method (VIM) shows the simplicity, effectiveness and efficiency of the present approach with less 

computational work. 
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I.  INTRODUCTION  

Partial Differential Equations (PDEs) have numerous applications in various fields of science and engineering 

such as fluid mechanic, thermodynamic, heat transfer and physics. (Debnath, 1997) 

Systems of PDEs, linear or nonlinear have attracted much concern in studying evolution equations that describe 

wave propagation, in investigating shallow water waves and in examining the chemical reaction-diffusion model of 

Brusselator. Specifically, systems of nonlinear PDEs have also been noticed to arise in chemical and biological 

applications. The general ideas and the essential features of these systems are of wide applicability. 

Several traditional methods such as method of characteristics and variational principle are among the methods that 

are useful in handling nonlinear PDEs. The existing techniques encountered some difficulties in terms of the size of 

computational work needed especially when the system involves several partial differential equations. (Wazwaz, 2009) 

To avoid the difficulties that usually arise from traditional strategies, the Reduced differential transform method 

(Keskin and Oturanc, 2009) form a reasonable basis for studying systems of partial differential equations. 

The method, as would be seen later, has a useful attraction in that solution is presented in a rapidly convergent 

power series with easily computable components. 

2. BASIC IDEAS OF REDUCED DIFFERENTIAL TRANSFORM ME THOD 

Suppose that ( )txu ,  is a function of two variables which is analytic and timesk − continuously differentiable 

with respect to time t and space x in our domain of interest. 

Assume we can represent this function as a product of two single variable functions ( ) ( ) ( )., tgxftxu =  

From the definitions of differential transform method, the function can be represented as 
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Where ( )xU k  is the transformed function, which can be defined as  
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Thus from equations ( )1.2  and ( ),2.2  we can deduce    
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Considering equations ( ) ( ),3.21.2 −  it is clear that the concept of the RDTM is derived from the power series 

expansion. 

The summary of the fundamental transformation properties of RDTM are shown in the table below: 

Table 1:  Basic Transformations of RDTM 
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3. APPLICATIONS 

In this section, we apply the RDTM to three numerical examples of system of nonlinear partial differential 

equations and then compare our approximate solutions to the exact solutions. 
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Example 3.1:  Consider the Nonlinear system of partial differential equations [7] 
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Applying the basic properties of the RDTM, we obtain the transformed form of equation ( )1.3  as 
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where ( )xN k  is the transformed form of u−1  and 
′

kN is the transformed form of .1+v  

Easily the first few nonlinear terms are: 
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Using the initial condition ( )2.3 , we have  
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Now substituting  ( )4.3  into ( )3.3 , we obtain the following ( )xU k , ( )xVk  values successively; 
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Finally, the differential inverse transform of ( )xuk ,  ( )xvk  gives 
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Which is the same as the exact solution of the system of nonlinear partial differential equations ( ) ( )2.31.3 −   

given by  ( ) ( ) .,,,, txtx eetxvtxu +−−=  

Example 3.2: Consider the nonlinear system of partial differential equation [7]            
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Applying the basic properties of the RDTM, we obtain the transformed form of equation ( )5.3
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( )7.3  

Using the initial condition ( )6.3 , we have  

yx

yx

yx

ew

ev

eu

+−

−

+

=

=

=

0

0

0

                                                                                                                                                        ( )8.3  

Now, substituting equation ( )8.3  into equation ( )7.3 , we obtain the following ( )yxU k , , ( )yxVk ,
 

and 

( )yxWk , values successively             
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Finally, the differential inverse transforms of ( )yxU k , ,  ( )yxVk ,  and  ( )yxWk ,  gives 
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Which is the same as the exact solution of the system of nonlinear partial differential equations (3.6)-(3.7) given 

by  
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Example 3.3: Consider the nonlinear system of partial differential equation [7]            
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Applying the basic properties of the RDTM, we obtain the transformed form of equation ( )9.3
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i.e.  
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( )xN k  is the transformed form of 
te+1  and ( )xFk is the transformed form of 

te−−1  

Easily the first few nonlinear terms are: 

,...t

t

t

eN

eN

eN

=′′′
=′′
=′

 and  

,...t

t

t

eF

eF

eF

−

−

−

=′′′
−=′′

=′

                                                                                                                      

( )11.3  

Using the initial condition ( )10.3 , we have  
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Now, substituting equation ( )12.3  into equation ( )11.3 , we obtain the following ( )yxU k , , ( )yxVk , and 

( )yxWk , values successively             
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Finally, the differential inverse transforms of ( )yxU k , ,  ( )yxVk ,  and  ( )yxWk ,  gives 
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 And                              
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Which is the same as the exact solution of the system of nonlinear partial differential equations (3.9)-(3.10) given 

by  
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4. CONCLUSIONS 

In this paper, the RDTM was used to obtain the solution of three systems of nonlinear partial differential 

equations. 

The RDTM is a direct method which does not require any discretization and it approaches the exact solution 

rapidly, unlike the ADM and VIM which requires the computation of Adomian polynomials and correction functional 

respectively. 

We thus conclude that the method is a very powerful one, which from this study gives the exact solution of 

nonlinear system of partial differential equations in a simple way with less computational work as compared to 

applications of ADM and VIM to nonlinear system of partial differential equations. 
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