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ABSTRACT

In this paper, the reduced differential transformation method is used to obtain the solution of systems of nonlinear
partial differential equation. The exact solutions of three systems of nonlinear partial differential equations are calculated

in the form of series with easily computable components.

A comparison of the technique with some other known techniques like Adomian Decomposition Method (ADM),
Variation Iteration Method (VIM) shows the simplicity, effectiveness and efficiency of the present approach with less

computational work.
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I. INTRODUCTION

Partial Differential Equations (PDES) have numerous applications in various fields of science and engineering

such as fluid mechanic, thermodynamic, heat transfer and physics. (Debnath, 1997)

Systems of PDEs, linear or nonlinear have attracted much concern in studying evolution equations that describe
wave propagation, in investigating shallow water waves and in examining the chemical reaction-diffusion model of
Brusselator. Specifically, systems of nonlinear PDEs have also been noticed to arise in chemical and biological
applications. The general ideas and the essential features of these systems are of wide applicability.

Several traditional methods such as method of characteristics and variational principle are among the methods that
are useful in handling nonlinear PDEs. The existing techniques encountered some difficulties in terms of the size of

computational work needed especially when the system involves severa partial differential equations. (Wazwaz, 2009)

To avoid the difficulties that usually arise from traditional strategies, the Reduced differential transform method
(Keskin and Oturanc, 2009) form areasonable basis for studying systems of partia differential equations.

The method, as would be seen later, has a useful attraction in that solution is presented in a rapidly convergent

power series with easily computable components.

2. BASIC IDEAS OF REDUCED DIFFERENTIAL TRANSFORM ME THOD

Suppose that u(X,t) is a function of two variables which is analytic and K — times continuously differentiable

with respect to time t and space Xin our domain of interest.
Assume we can represent this function as a product of two single variable functions u(x, t) =f (X)g(t).
From the definitions of differential transform method, the function can be represented as
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u(xt)= S )X 3 6
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Where U (X) is the transformed function, which can be defined as
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Thus from equations (2.1) and (2.2), we can deduce
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(2.1)
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Considering equations (2.1) - (2.3), it is clear that the concept of the RDTM is derived from the power series

expansion.

The summary of the fundamental transformation properties of RDTM are shown in the table below:

Table 1: Basic Transformations of RDTM

Functional
form

u(x,t)
u(x,t)

u(x

[

wx.t)=
w{x.t)=2

w(xt)=

v(xt)
t)

Al
(M)

k(X) =

Transformed

form
u(x,t)} _

ol

ak
o

w(x.t)= p(x.talxr(xt)  W(x)= >R
w(x,t) = x™t" W, (x) = x3(k - n) J(k—n)z{
wx,t)=xtu(xt) W,(x)= XU, _.(x)
wlx,t)= ;1 u(xt) w, ()= L:‘)ukm( )
W(x,t) = :x” u(x,t) W, (x) =%Uk(x)
whxt)= ai”atm x) W(x)= 067 . Lm)

3. APPLICATIONS

In this section, we apply the RDTM to three numerical examples of system of nonlinear partia differential

equations and then compare our approximate solutions to the exact solutions.
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Solving System of Nonlinear Partial Differential Eqations (PDES)
Example 3.1: Consider the Nonlinear system of partial differential equations[7]
u +w, +u-1=0 (31)
V, —uv, —v-1=0 '

Subject to theinitial conditions

u(x,0) = e* (32)
v(x,0) = ™
Applying the basic properties of the RDTM, we obtain the transformed form of equation (3. 1) as

(k+1U,.a(x) ZV 4 (4+ N, (x)

k '
(k + 1)\/k+1 (X) = zUi (X)&Vk—i (X) + N, (X)
i=0
K
V. N
BT O e R A ORI R
ie ) (3.3)

V)= 3 0 B2 0+, )

where N, (x) isthe transformed form of 1— U and Nk' isthe transformed form of v +1.

Easily the first few nonlinear terms are;

No =1-U, No =Vo +1

N, =-u, and N1' =V,

N, =-U,,... N2' =V,,...

Using the initial condition (3.2) , We have

e (3.4)

v, =e

Now substituting (3.4) into (3.3) , we obtain the followingU (X) Vo (X) values successively;
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e
_1 1
Uz(x)—Ee Vz(x):ze
1 1
Uy(x)=-~¢" V,(x)=—e™
16 and i 61
U4(x):§ex V4(X)=ze_x

Finally, the differential inverse transform of u, (X) v Vi (X) gives

_m k_m(_l)kkx_x X t2x t3x o x-t
u(xt) =Y U, (Xt =Y T tke =g —te +—e - —e* +..=e
k=0 o K 2 3
And
v(x t):iv (e = > ie‘x =e +te” +Ee‘x +Ee‘x +.=e
g =g 2 3~

Which is the same as the exact solution of the system of nonlinear partial differential equations(3.1) - (3.2)
given by u(x,t), V(X,t) =t e,
Example 3.2: Consider the nonlinear system of partial differential equation [7]

U, +Vv,w, —v,w, =-u
Ve WU, +wou, =V (3.5)

W, +uv, +UV, =W
Subject to the initial conditions

u(x, y,0) = e
v(x,y,0) = e (3.6)
w(x, y,0) = ™

Applying the basic properties of the RDTM, we obtain the transformed form of equation (3.5)
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CETMOES Y ORAURORS 3 VO R R RINCRY
(k2N )= =3 S-S0, (1) 32 5120, 09+ )
(k#4923 20, (2, (1) 320, (120, (9 + W )
0= [T | 22 2w ()3 2 () 2, (9-U, (x) ]
Vsl = [ | 2 om0 20 ()3 2w ) 20, 0+ ()
W= | 220, 60 2V ()= 220, () v () + i )

Using the initial condition (3.6), we have

u, =’
0
— AX-Y
vV, =e
w, =e

Now, substituting equation (3.8) into equation(3.7), we obtain the followingU, (X, ),

W, (X, y) values successively

U 1(X- y) =-e*” Vl(x' y) =e"’ W, (X, Y) =e
1. L, B
D)=ken vkeler )= te
— 1 X+ 1 X— 1 -
U3(X’y)__ge ’ ' Vg(x,y)zge ’ and WS(X,y)de g
1 X+ 1 x— 1 -
U4(X’y)=£e ’ 4(X1y):§e ’ W4(X,y)=§e y

U, (y)= EL e

1.
Vn(X' y)zﬁe /

1
Wn (X' y)zﬁe g

Finally, the differential inverse transforms of U (X, y) » Vo (X, y) and W, (X, y) gives
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U(X,y,t):iUk(x,y)[k = ﬂtk x+y
k=0 =0 k!
U(X, y,t) = XY —te*Y + t22| exty — 1:3?; ety 4+ = ex+y_t

v(x,y,t)= ivk (x, y)i* = iit"ex’y
k=0 k=0 kl
( t)_ XY 4t ><—y_|_t2 x—y+t3 <y 4 = @<yt
X y,t)=¢ e Ee Ee ..—€
And

w(x,y,t)= iwk(x, yrk = 5 Lixgxey

k=0 ko K!
t? t°
w(x,y,t)= e +te™ + —e "V + —e XV + = eV
s 2! 3

Which is the same as the exact solution of the system of nonlinear partia differential equations (3.6)-(3.7) given
by

u(x, y,t), v(x, y,t), W(x, y,t) =Tt @Yt eyt

Example 3.3: Consider the nonlinear system of partial differential equation [7]

u +uyv, =1+¢€

v +vw, =1-¢e” (3.9)

W, +wu, =1-e”

Subject to the initial conditions

u(x, y,0)=1+x+y

v(x,y,0)=1+x-y (3.10)
vv(x, y,O) =1-x+y

Applying the basic properties of the RDTM, we obtain the transformed form of equation (3.9)

)2V, )+ N, (%)

ax

(y) Wk |( )+ Fk(x)
(Zu, )+ F )

ay

k+1Ua()=-%

i=0

(k + 1V, (x) = zk

(k +1W,., (x) = zk

i=0

k

Y
2’%@ < ‘Q’ gém
<
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N, (x) isthe transformed form of 1+ €' and F, (x)is the transformed form of 1— €™

Easily the first few nonlinear terms are:

NI = et F! = e—t
N'=¢" ad F'=-¢" (3.11)
N"=¢',.. F"=e',.

Using the initial condition (3.10) , we have

U, =1+x+vy
Vo =1+ x-y (3.12)
W, =1-x+y

Now, substituting equation (3.12) into equation (3.11), we obtain the foIIowingUk(X, y), V, (X, y)and

W, (X, y) values successively

Uy(xy)=1  Valxy)=-1 W, (x,y)= -1
Uz(x!y):% VZ(X'y)zé Wz(X y):%
U3(X,y)=% Vs(X’Y)__— and Ws(x,y)z—%
U4(X’Y)=% V4(X-Y)=% W4(X,y)=%
u,(x y)=% v, (x,y)= (‘:)n W, (x y) = (—:)”

Finally, the differential inverse transforms of U (X, y) » Vo (X, y) and W, (X, y) gives

u(x,y,t):iuk(x,y)t" =1+ x+ y+t+%t2+___
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And

w(x, y,t) = 0

w(x, y,t)=-x+y+e"

[Ms

W, (x, y)t< =1-x+ y—t+%t2 —%t3 +...

=
1

Which is the same as the exact solution of the system of nonlinear partial differential equations (3.9)-(3.10) given
by

u(x, y,t)v(x, y,t)wix,y,t)= x+y+e' , x—y+et,—-x+y+e™.

4. CONCLUSIONS

In this paper, the RDTM was used to obtain the solution of three systems of nonlinear partial differential
equations.

The RDTM is a direct method which does not require any discretization and it approaches the exact solution
rapidly, unlike the ADM and VIM which requires the computation of Adomian polynomials and correction functional

respectively.

We thus conclude that the method is a very powerful one, which from this study gives the exact solution of
nonlinear system of partia differential equations in a simple way with less computational work as compared to

applications of ADM and VIM to nonlinear system of partial differential equations.
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